Systematic and nonsystematic perfect codes of infinite length over finite fields
نویسندگان
چکیده
منابع مشابه
Full-Rank Perfect Codes over Finite Fields
In this paper, we propose a construction of fullrank q-ary 1-perfect codes over finite fields. This construction is a generalization of the Etzion and Vardy construction of fullrank binary 1-perfect codes (1994). Properties of i-components of q-ary Hamming codes are investigated and the construction of full-rank q-ary 1-perfect codes is based on these properties. The switching construction of 1...
متن کاملOn non-full-rank perfect codes over finite fields
The paper deals with the perfect 1-error correcting codes over a finite field with q elements (briefly q-ary 1-perfect codes). We show that the orthogonal code to the q-ary non-full-rank 1-perfect code of length n = (q − 1)/(q − 1) is a q-ary constant-weight code with Hamming weight equals to qm−1 where m is any natural number not less than two. We derive necessary and sufficient conditions for...
متن کاملQuasi-Perfect Lee Codes from Quadratic Curves over Finite Fields
Golomb and Welch conjectured in 1970 that there only exist perfect Lee codes for radius t = 1 or dimension n = 1, 2. It is admitted that the existence and the construction of quasi-perfect Lee codes have to be studied since they are the best alternative to the perfect codes. In this paper we firstly highlight the relationships between subset sums, Cayley graphs, and Lee linear codes and present...
متن کاملConstacyclic codes over finite fields
An equivalence relation called isometry is introduced to classify constacyclic codes over a finite field; the polynomial generators of constacyclic codes of length lp are characterized, where p is the characteristic of the finite field and l is a prime different from p.
متن کاملCurves over Finite Fields and Codes
This paper gives a review of recent developments in this field and discusses some questions.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Sibirskie Elektronnye Matematicheskie Izvestiya
سال: 2019
ISSN: 1813-3304
DOI: 10.33048/semi.2019.16.122